Calculus II

Important: This cheat sheet is not intended to be a list of guaranteed rules to follow. This introduces some hints and some ideas you may consider when choosing tests for convergence or divergence when evaluating a given series.

It is usually a good idea to try using the Test for Divergence as a first step when evaluating a series for convergence or divergence. If we can show that:

$$
\lim _{n \rightarrow \infty} a_{n} \neq 0
$$

Then we can say that the series diverges without having to do any extra work.
Below are some general cases in which each test may help:

P-Series Test:

- The series be written in the form: $\sum \frac{1}{n^{p}}$

Geometric Series Test:

- When the series can be written in the form: $\sum a_{n} r^{n-1}$ or $\sum a_{n} r^{n}$

Direct Comparison Test:

- When the given series, a_{n} looks like a known, or more simple, series, b_{n}

Limit Comparison Test:

- When you can see that the series looks like another convergent or divergent series, b_{n}
- But it is hard to say whether $b_{n}>a_{n}$ or $b_{n}<a_{n}$

Root Test:

- When the series can be written in the form: $\sum\left(a_{n}\right)^{n}$

Alternating Series Test:

- When the series can be written in the form: $\sum(-1)^{n+1} a_{n}$ or $\sum(-1)^{n} a_{n}$

Ratio Test:

- Whenever we are given something involving a factorial, e.g. n !
- Whenever we are given something involving a constant raised to the $n^{t h}$ power, e.g. $\sum \frac{n+5}{5^{n}}$

Integral Test:

- If the sequence is:
- continuous
- positive
- decreasing (we can use the First Derivative Test here)

Calculus II

Series - Things to Consider
Remember: These are just suggestions. There are other tests which may get us to the same answer.

Tel:
North: 760-750-4101
South: 760-750-7324

