

California State University SAN MARCOS

Calculus II

Important: This cheat sheet is not intended to be a list of guaranteed rules to follow. This introduces some hints and some ideas you may consider when choosing tests for convergence or divergence when evaluating a given series.

It is usually a good idea to try using the **Test for Divergence** as a first step when evaluating a series for convergence or divergence. If we can show that:

$\lim_{n \to \infty} a_n \neq 0$

Then we can say that the series diverges without having to do any extra work.

Below are some general cases in which each test may help:

P-Series Test:

• The series be written in the form: $\sum \frac{1}{n^p}$

Geometric Series Test:

• When the series can be written in the form: $\sum a_n r^{n-1}$ or $\sum a_n r^n$

Direct Comparison Test:

• When the given series, a_n looks like a known, or more simple, series, b_n

Limit Comparison Test:

- When you can see that the series looks like another convergent or divergent series, b_n
- But it is hard to say whether $b_n > a_n$ or $b_n < a_n$

Root Test:

• When the series can be written in the form: $\sum (a_n)^n$

Alternating Series Test:

• When the series can be written in the form: $\sum (-1)^{n+1} a_n$ or $\sum (-1)^n a_n$

Ratio Test:

- Whenever we are given something involving a factorial, e.g. n!
- Whenever we are given something involving a constant raised to the n^{th} power, e.g. $\sum \frac{n+5}{5^n}$

Integral Test:

- If the sequence is:
 - continuous
 - positive
 - decreasing (we can use the First Derivative Test here)

California State University SAN MARCOS

Calculus II

Series - Things to Consider

Remember: These are just suggestions. There are other tests which may get us to the same answer.

